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The medial prefrontal cortex (mPFC) plays an essential role in
regulating emotion, including inhibiting fear when danger has
passed. The extinction of fear, however, is labile and a number of
factors, including stress, cause extinguished fear to relapse. Here we
show that fear relapse in rats limits single-unit activity among
infralimbic (IL) neurons, which are critical for inhibiting fear responses,
and facilitates activity in prelimbic (PL) neurons involved in fear
expression. Pharmacogenetic activation of noradrenergic neurons in
the locus coeruleus mimics this shift in reciprocal IL–PL spike firing,
increases the expression of conditioned freezing behavior, and causes
relapse of extinguished fear. Noradrenergic modulation of mPFC fir-
ing represents a mechanism for relapse and a potential target for
therapeutic interventions to reduce pathological fear.
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Learning to inhibit or extinguish fear when danger has passed is
not only adaptive but also central to behavioral therapies for

many psychiatric disorders. However, the extinction of fear is
short-lived and relapse occurs under a variety of conditions, in-
cluding psychological stress. Considerable data indicate that the
prelimbic (PL) and infralimbic (IL) subdivisions of the medial
prefrontal cortex (mPFC) serve to regulate the expression and
inhibition of learned fear, respectively (1, 2). Projections from
the locus coeruleus (LC) to the mPFC have a prominent role in
stress-induced modulation of mPFC function (3–5). Moreover,
noradrenergic transmission mediates stress-induced decreases in
IL spike firing and impairments in extinction learning (6, 7). This
work suggests that noradrenergic neurons in the LC may trigger
relapse by altering mPFC firing dynamics to drive fear expression
while weakening fear inhibition. Here, we explored this possi-
bility using selective pharmacogenetic manipulation of LC nor-
adrenergic neurons and mPFC single-unit recordings in rats
undergoing relapse of extinguished fear.

Results
To characterize the neuronal correlates of extinction retrieval
and fear relapse in the mPFC, we implanted animals with a single
microelectrode array targeting both PL and IL and recorded single-
unit activity using a within-subject behavioral design (Fig. 1 A and
B). In this design, animals underwent standard auditory fear con-
ditioning and extinction in distinct contexts; freezing behavior
served as the index of fear (SI Appendix, Fig. S1). To facilitate the
relapse of fear after extinction, animals received an unsignaled
footshock unconditioned stimulus in the conditioning context to
reinstate the fear memory (8). Single-unit recordings were then
made in both the extinction context (where rats retrieved an ex-
tinction memory and expressed low levels of conditional freezing
behavior) and a third distinct context (where rats retrieved a fear
memory and expressed relatively higher levels of freezing behavior).
Hence, this design combines two procedures that drive relapse of
extinguished fear: reinstatement (reexposure to the unconditioned
stimulus) and renewal (a context shift during retrieval testing); we
refer this to as a “renewalment” procedure (8, 9). Importantly, the
animals remained connected to the recording interface throughout

these sessions so that the same mPFC neurons could be recorded
during both retrieval tests (i.e., extinction retrieval and fear relapse).
During the test sessions, we recorded a total of 333 PL neu-

rons and 288 IL neurons from 12 rats. Conditioned stimulus
(CS)-evoked activity was normalized by calculating z scores for
each post-CS bin (200 ms) relative to the firing rate in the 1-s
pre-CS period; these z scores were averaged across the five CSs
delivered during each test. As shown in Fig. 1, single-unit activity
recorded in PL (Fig. 1C) and IL (Fig. 1D) neurons exhibited a
reciprocal relationship in response to an identical auditory CS
presented in the two distinct test contexts. Neurons in PL
exhibited reliably higher CS-evoked firing in the relapse context
relative to the extinction context, whereas the inverse was true
among IL single units. This observation was confirmed in an
ANOVA, which revealed a significant test context × brain region
interaction on the average normalized firing rate in PL and IL to
the test CSs [Fig. 1E; F(1, 629) = 11.73, P < 0.001]. The re-
ciprocal firing in PL and IL mirrored CS-elicited freezing be-
havior (normalized to the 3-min pre-CS baseline), which was low
in the extinction context and high in the relapse context [Fig. 1E;
F(1, 11) = 6.05, P < 0.05].
Because we recorded the activity of the same prefrontal neu-

rons during both retrieval tests, we were able to classify units
according to four firing phenotypes defined by the direction of
their CS-evoked response: excitatory (+, z > 0 for the 10-s CS
averaged across five trials) or inhibitory (−, z < 0 for the 10-s CS
averaged across five trials) in each of the two contexts (extinction
or relapse). As shown in Fig. 1, these firing phenotypes were
differently represented among the populations of neurons
recorded in PL and IL (Fig. 1 F and G). A χ2 analysis revealed
differences between PL and IL in terms of the proportion of
neurons responding to the CS during extinction retrieval and
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fear relapse such that a larger proportion of PL neurons showed
increased firing during relapse, whereas IL neurons were pro-
portionately more active during extinction retrieval [χ2 (3) = 9.04,
P < 0.05]. Fig. 1H depicts these data as population vectors that
represent both the number of neurons in each phenotype (repre-
sented by arrow thickness) and the population mean of the average
CS-evoked activity in each test context (indicated by the x,y co-
ordinate of the arrow tip). These plots confirm that PL units fire
preferentially in the relapse context, whereas IL units fire prefer-
entially in the extinction context. Collectively, these data reveal that
IL neurons showed more robust firing in response to the CS in the
extinction context compared with the relapse context, whereas PL
activity was higher relative to IL in the relapse context.
Given that noradrenergic transmission mediates stress-induced

decreases in IL spike firing and impairments in extinction learning
(6, 7), we hypothesized that noradrenergic neurons in the LC would
drive fear relapse. To selectively target noradrenergic LC neurons
(Fig. 2A), we used custom excitatory and inhibitory designer re-
ceptors exclusively activated by designer drugs (DREADDs) whose
receptor expression is under control of the synthetic dopamine-
β-hydroxylase PRSx8 promoter (10). To confirm the in vivo func-
tional efficacy of these LC-specific DREADDs, animals expressing
either AAV9-PRSx8-hM3Dq-HA (Fig. 2C; an excitatory DREADD)

or AAV9-PRSx8-hM4Di-HA (Fig. 2D; an inhibitory DREADD)
were anesthetized and implanted with a recording array for acute LC
recordings. We used a within-subject design to record the activity of
the same neurons (n = 54, hM3Dq; n = 100, hM4Di) in response to
both vehicle (VEH) and clozapine N-oxide (CNO, 3 mg/kg, i.p.).
After a 10-min baseline period, rats were injected with VEH, and
recording continued for 30 min, upon which rats were then injected
with CNO, followed by recording for an additional 60 min to observe
the changes in firing rate.
The spontaneous baseline LC firing rates before drug ad-

ministration were as follows (mean ± SEM): hM3Dq (2.09 ±
0.12 Hz) and hM4Di (1.83 ± 0.09 Hz). To assess CNO-induced
changes in spike firing, we normalized the postinjection firing
rates (60-s bins across the entire 100-min recording session) to
the 10-min baseline period. As shown in Fig. 2 B–D, CNO in-
duced statistically reliable changes in average LC firing rate [Fig.
2B; drug × virus interaction, F(1, 122) = 117.7, P < 0.0001]. It
significantly increased LC firing in 76% (41/54) of the neurons
recorded in hM3Dq-expressing rats [Fig. 2C; main effect of time,
F(69, 3,657) = 22.00, P < 0.0001] and decreased LC firing in 65%
(65/100) of the neurons recorded in hM4Di-expressing animals
[Fig. 2D; main effect of time, F(69, 6,831) = 15.11, P < 0.0001].

Fig. 1. Extinction retrieval and fear relapse bidirectionally engage mPFC signaling. (A) Representative histology of electrode placements in PL and IL. (B)
Schematized behavioral design. (C and D) CS-evoked firing from PL (C) and IL (D) neurons in retrieval and renewal. (E) Percentage of freezing (gray circles,
mean ± SEM) across tests; freezing is overlaid with the 10-s summary of the CS-evoked firing responses. (F and G) Pie charts displaying the proportion of PL
and IL neurons in one of four categories based on how neurons responded to presentation of the CS in both retrieval and relapse. (H) Vector plots depicting
CS-evoked firing. The tips of the arrows point to the mean CS-evoked responding for a particular quadrant. The thickness of the arrow is proportional to the
total number of neurons recorded in either PL or IL. Ext, extinction; Rel, relapse; US, unconditioned stimulus.
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After confirming the functional efficacy of the LC DREADDs,
we next determined whether manipulating LC activity would in-
fluence extinction retrieval and fear relapse in the within-subject
renewalment design. As shown in Fig. 2E, VEH-treated rats
expressing inhibitory or excitatory LC DREADDs showed low
levels of CS-elicited freezing (normalized to baseline) in the ex-
tinction context, but a marked increase in freezing in the relapse
context. Interestingly, pharmacogenetic activation of noradrenergic
neurons in the LC was sufficient to induce fear relapse; CNO

administration in hM3Dq-expressing rats dramatically increased
freezing in the extinction context. Inhibiting LC activity, however,
did not prevent fear relapse [drug × context × virus interaction,
F(1, 40) = 5.17, P < 0.05]. This is not surprising insofar as relapse
associated with a context shift is independent of contextual fear (11).
In addition to increasing freezing to the CS, CNO administration
produced significant increases in freezing before delivery of the CS
(during the baseline period) in animals expressing hM3Dq in the
LC (SI Appendix, Fig. S2). Note that this increase in baseline
freezing was independent of the relapse effect, which was manifest
as an increase in CS-evoked freezing normalized to the elevated
baseline. The observation that LC activation increases freezing
behavior is consistent with recent work showing that LC activation
induces anxiety-like behavior (12, 13). These results reveal that
pharmacogenetic activation of noradrenergic LC neurons promotes
the relapse of extinguished fear.
The relapse of extinguished fear is associated with the sup-

pression of activity in IL-amygdala circuits involved in the in-
hibition of fear (14, 15). Based on previous work showing that
noradrenergic transmission mediates stress-induced reductions
in IL firing (6), we hypothesized that LC-driven fear relapse is
mediated by a suppression of IL spike firing in the mPFC. To test
this hypothesis, microelectrode-implanted rats (targeting PL and
IL) expressing either AAV9-PRSx8-hM3Dq-HA or an AAV9-
PRSx8-mCherry control virus (SI Appendix, Fig. S3) in the LC
(Fig. 3A) underwent fear conditioning, extinction, and retrieval
tests in the extinction context after either VEH or CNO ad-
ministration (Fig. 3B and SI Appendix, Fig. S4). The number of
neurons recorded in each group and brain area are as follows:
VEH mCherry [PL, n = 160; IL, n = 135]; CNO mCherry [PL,
n = 134; IL, n = 136]; VEH hM3Dq [PL, n = 131; IL, n = 105];
CNO hM3Dq [PL, n = 105; IL, n = 116]. As shown in Fig. 3 C–F,
pharmacogenetic activation of noradrenergic LC neurons in-
creased CS-evoked spike firing in PL and suppressed that in IL.
In other words, LC activation shifted mPFC firing from a low-
fear (IL > PL) to a high-fear profile (PL > IL) [Fig. 3 D and F;
drug × virus × region interaction, F(1, 1,010) = 6.80, P < 0.01]
and drove fear relapse [Fig. 3 D and F, gray circles; F(1, 11) =
7.93, P < 0.05]. Collectively, these results reveal that LC acti-
vation toggles reciprocal firing in the mPFC by decreasing CS-
evoked spike firing in IL on the one hand, while increasing PL
spike firing on the other. This inversion of extinction-related
mPFC firing results in the relapse of extinguished fear.
Although the previous data strongly implicate a role for LC-

norepinephrine (NE) modulation of mPFC CS-evoked firing, they
do not causally implicate LC projections to mPFC in the observed
neural and behavioral changes. To address this question, we sought
to determine whether the propensity of CNO-induced LC activation
to cause fear relapse could be antagonized by pharmacologically
reducing NE release in the PL with intracranial infusions of cloni-
dine, an alpha2-adrenoceptor agonist. Because it has been sug-
gested that LC actions in the basolateral amygdala (BLA) might
also come to influence the mPFC (3–5), we also included animals in
which we reduced NE release in the amygdala. To this end, animals
expressing AAV9-PRSx8-hM3Dq-HA were implanted with bi-
lateral cannula targeting either the PL or BLA to examine if CNO-
induced LC activation mediates its behavioral effect via one of these
targets. Animals underwent fear conditioning, extinction, and re-
trieval tests in the extinction context (SI Appendix, Fig. S5). Using a
within-subject design (Fig. 4A), animals received intracranial infu-
sions of either vehicle or clonidine (order counterbalanced) in ei-
ther the PL or BLA (Fig. 4B). After intracranial infusions, animals
were injected with systemic VEH or CNO (order counterbalanced)
and, ∼20 min later, underwent extinction retrieval as in the previous
experiments. In this design, each rat underwent four separate ex-
tinction test sessions. As shown in Fig. 4C, intracranial clonidine
infusions reduced CNO-induced increases in CS-evoked freezing
relative to VEH controls [systemic drug× intracranial drug interaction,

Fig. 2. LC-specific DREADD functionality. (A) Representative microelectrode
placement in the LC (Left), and a schematic (Right) indicating the placement
of electrodes and DREADDs in the LC. (B) CNO administration bidirectionally
regulates LC firing rates in animals expressing inhibitory (hM4Di) or excit-
atory (hM3Dq) DREADDs in the LC. (C and D, Top) Immunohistochemical
localization of LC-DREADDs (HA, purple) in tyrosine hydroxylase-positive
neurons (TH, green); OV, overlay. (Scale bar, 100 μm.) CNO administration
produced robust increases (C) and decreases (D) in LC spike firing illustrated
in both the raw recording traces (Middle) and the average firing rate (Bot-
tom) of all neurons recorded. (E, Right) Percentage of freezing (mean ± SEM)
for each group across days. CNO produced fear relapse in the hM3Dq group
(black circles), whereas LC inhibition via hM4Di (white circles) had minimal
effects on freezing in extinction retrieval and fear relapse. Background
colors within the freezing graphs correspond to each session’s context (Left),
with blue indicating extinction retrieval and red indicating fear relapse.
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F(1,18) = 8.04, P < 0.05]. This effect was similar whether clo-
nidine was infused in PL or BLA. These data reveal that NE
release in both the PL and BLA mediates the behavioral effects

of pharmacogenetic activation of the LC. This suggests that NE
release in the BLA might drive, at least in part, the neuronal
correlates of fear relapse observed in the PL.

Fig. 3. LC-NE drives PL CS-evoked activity and fear relapse. (A) Schematic representation of experimental approach. (B) Schematized behavioral design. (C) CS-evoked
responses in PL (Left) and IL (Right) during extinction retrieval after either VEH or CNO administration in animals expressing the blank mCherry vector. (D) Percentage of
freezing (gray circles, mean ± SEM) across test days; freezing is overlaid with the 10-s summary of the CS-evoked firing responses for each brain region. (E) CS-evoked
responses in PL (Left) and IL (Right) in animals expressing hM3Dq in the LC after either VEH or CNO administration. (F) Percentage of freezing (gray circles, mean ± SEM)
across test days; freezing is overlaid with the 10-s summary of the CS-evoked firing responses for each brain region. Ext, extinction; US, unconditioned stimulus.

Fig. 4. Local infusions of clonidine in either the PL or BLA block CNO-induced fear relapse to a previously extinguished CS. (A) Schematic representation of
the experimental approach. (B) Schematic histology displaying location of cannula tips in either the PL or BLA. (C) Percentage of freezing (mean ± SEM) across
test days split by brain region. Data are normalized by subtracting the five-trial CS-evoked averages from the 3-min stimulus-free baseline period. Background
colors depict systemic injections (orange, vehicle; gray, CNO).
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Discussion
Collectively, these experiments uncover a role for LC modula-
tion of mPFC spike firing in the relapse of extinguished fear.
Specifically, we demonstrate that DREADD-induced increases in
LC firing toggle reciprocal spike firing in the mPFC and drive re-
lapse of extinguished fear. In particular, LC activation increased CS-
evoked responding in PL, while decreasing that in IL, an inversion
of the IL-dominated firing observed after extinction (1, 11, 16).
These data reveal that noradrenergic neurons in the LC modulate
mPFC signaling to induce neuronal firing signatures associated with
high fear states, which in turn drives relapse.
The current data confirm and extend previous work revealing

dissociable roles of PL and IL in conditioned fear (17–23). We
demonstrate that CS-evoked firing in IL is most pronounced in the
extinction context (where fear is low), whereas it is reliably lower in
the relapse context (where fear is high). In contrast, this pattern is
inverted in PL, where CS-evoked spike firing is relatively higher in
the relapse compared with the extinction context. Although it is well
established that PL and IL firing correlate with high and low fear
states respectively, the neural circuitry and transmitter systems
driving these differences are relatively unknown. We now demon-
strate a critical role for the LC-NE system in driving differential
responses in PL and IL: Pharmacogenetic activation of the LC in-
creased PL firing (relative to IL) and caused the relapse of extin-
guished fear. One possibility is that direct LC→PL projections
excite PL pyramidal cells, which in turn inhibit the IL; others have
shown that PL→IL connections can influence freezing behavior
(24). A second possibility is that these differences are driven by
indirect pathways from the LC to the mPFC via the amygdala. Past
work has shown that BLA projections to PL and IL mediate high
and low fear states, respectively (25). The fact that reducing NE
release in either the PL or BLA prevented LC-induced fear relapse
suggests that it may be a combination of these pathways that me-
diates the effects of LC activation on fear.
The LC-NE system has been widely studied in the context of

stressor- and trauma-related disorders such as posttraumatic stress
disorder (PTSD) (3, 26–28). For example, prazosin, an alpha1-
adrenoceptor antagonist, has had some success in reducing night-
mares associated with PTSD (29–32, but see ref. 33). In addition,
guanfacine and clonidine (alpha2-adrenoceptor agonists) as well as
propranolol (a beta1,2-adrenoceptor antagonist) have shown promise
in alleviating PTSD symptomatology (3, 5, 34). However, here, we
show no effect of pharmacogenetic inhibition of the LC on either
extinction retrieval or fear relapse. This suggests that noradrenergic
antagonists such as propranolol might not be effective in reducing the
acute relapse of extinguished fear. Of course, it is possible that the
degree of inhibition we obtained with inhibitory DREADDs was not
sufficient to prevent NE release in LC terminals in the forebrain.
Overall, these data have important clinical implications

insofar as elevated NE levels are observed in patients with
PTSD and have been argued to underlie, at least in part, the

pathophysiology of this disorder (34–37). Consistent with this,
noradrenergic transmission causes stress-induced decreases in
IL firing and impairs extinction learning (1, 2, 4), which may un-
derlie extinction-learning deficits in individuals suffering from
PTSD (4, 5, 34, 38, 39). We now show that noradrenergic neurons
in the LC influence mPFC spike firing to drive the return of fear
once it has been extinguished. As such, noradrenergic tone along
with mPFC activity may serve as a reliable biomarker to predict fear
relapse. Moreover, pharmacotherapeutic interventions that mod-
erate LC hyperactivity in PTSD might be particularly effective in
promoting long-lasting extinction learning and preventing its relapse
once learned (6, 7, 34).

Materials and Methods
A detailed description of materials andmethods can be found in SI Appendix,
Materials and Methods. All procedures were conducted at Texas A&M Uni-
versity and performed in strict accordance with the guidelines and regula-
tions set forth by the National Institutes of Health and the Texas A&M
University, with full approval from its Institutional Review Board and Animal
Care and Use Committee.

Behavioral Procedures. Briefly, behavioral experiments were conducted as
previously described; each context was made distinct by varying features of
the chamber, including (but not limited to) olfactory cues and lighting
conditions (6, 7). Rats underwent auditory fear conditioning, extinction, and
within-subject retrieval testing in either the extinction context or another
relapse context.

Electrophysiology. Extracellular single-unit activity was recorded with a
multichannel neurophysiological system (OmniPlex; Plexon) in behaving
animals during the retrieval tests. Wideband signals were amplified, digi-
tized, and then saved on a personal computer for offline sorting and analysis
as previously described (6).

LC-Specific DREADDs. Viral constructs were obtained from the University of
Pennsylvania Vector Core. The constructs used throughout the paper are as
follows: AAV9-PRSx8-hM3Dq-HA, AAV9-PRSx8-hM4Di-HA, and AAV9-PRSx8-
mCherry. The PRSx8 promoter restricts expression to noradrenergic
neurons (10).

Histology. After completion of the experiment, the rats were overdosed with
pentobarbital. Rats were then perfused transcardially with 0.9% saline,
followed by 10% formalin. Brains were extracted from the skull and postfixed
in a 10% formalin solution for 24 h, followed by a 30% sucrose solution, in
which they remained for a minimum of 48 h. Coronal brain sections of mPFC
or BLA (40-μm thickness) were cut on a cryostat (−20 °C, Leica Microsystems),
mounted on subbed microscope slides, and stained with thionin (0.25%) to
visualize electrode and cannula placements. LC viral expression was con-
firmed using conventional immunohistochemical techniques.

Statistics. We analyzed the data with conventional parametric statistics
(StatView, SAS Institute). Two-way ANOVA and repeated-measures ANOVA
were used to assess general main effects and interactions (α = 0.05). Data are
represented as mean ± SEM.
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